
Lessons Learned from a Collaborative Sensor Web Prototype

Troy Ames

NASA Goddard Space Flight Center

Lynne Case, Chris Krahe, Melissa Hess

Aquilent, Inc.

Abstract: This paper describes the Sensor Web Application
Prototype (SWAP) system that was de_eloped for the Earth
Science Technology Office (ESTO). The SWAP is aimed at
providing an initial engineering proof-of-concept prototype
highlighting sensor collaboration, dynamic cause-effect
relationship between sensors, dynamic reconfiguration, and
remote monitoring of sensor webs.

1. INTRODUCTIO_'.i

The Advanced Architectures and Automation Branch of

NASA Goddard Space Flight Center developed the Sensor

Web Application Prototype (SWAP) as an engineering proof-

of-concept for technologies and archite_:tures associated with
sensor webs. A precise and generally at_cepted definition of a

sensor web has not yet been formuk_ted. However, it is
generally agreed that sensor webs t_ave certain intrinsic
characteristics. In the context of this pr,:)totype, a sensor web

consists of platforms that are interconnected by a
communications medium so that they can exchange
commands, status, and science data. The communications
medium used was an Ethemet local area network (LAN). In

our prototype, the instruments consisted of several tipping
bucket rain gauges and a weather station equipped with an
anemometer to measure wind speed and direction. Refer to

[1] for some interesting applications and research in the area

of sensor webs in the government and private sectors.

Some sensor webs may contain inslruments and sensors,

which simply perform measurements a_ld report their data to
a centralized computing platform. In th_s form of sensor web,
at least one computing platform is colle.:ting the data from all

reporting sensors and synthesizing the data into one or more

meaningful scientific products: a meteorological forecast
model output for example. More soplhsticated sensor webs
consist of platforms that are equipped with instruments and
sensors that communicate with each other in order to

influence the behavior of one or mort' other platforms. For

example, a rain gauge platform may cause a river gauge
platform to begin to measure and report water levels at a

higher frequency to determine if flash flood conditions may
be imminent. This is a simple example of what has been
called a "collaborative sensor web" and is depicted in Fig. i.
Collaborative sensor webs were the foc,_s of our investigation

for the SWAP project.

Fig. 1:Collaborative Sensor Web Overview

In a collaborative sensor web, a sensor must have some

way of influencing the behavior of other sensors whether it be
through data or explicit commands. This implies that the
sensors have some "intelligence" to them in the form of data

processing algorithms or heuristics that can be applied to the
measurements they are taking. Many of the platforms that we

investigated prior to developing the prototype were "dumb":
they simply made their measurements and reported the "raw"
data to a science processor. The concept of operation for

these "dumb" platforms is thus very simplistic: the sensors
are turned on, they collect data, and at some point a scientist
retrieves the data where it can then be processed. In order to
transform these "dumb" sensors into "smart" sensors and thus

allow them to collaborate for our prototype system, we

augmented them with microprocessors and developed
embedded software applications to provide the required
"intelligence" and thus with an ability to influence each
others behavior.

The objectives of the SWAP project were to:

• Provide a proof of concept and feasibility of a sensor
web.

• Identify near-term sensor web implementation issues

and challenges.
• Identify technology gaps where additional research

will be required to achieve sensor web goals.
• Assess the prototype's candidate software

architecture.

11. SYSTEM OVERVIEW

The Instrument Remote Control (IRC) [2] software

produced by the Advanced Architectures and Automation
Branch was used as the primary software component within
the sensor web. IRC is a software framework for monitoring

and controlling instruments. Prior to the SWAP project, IRC

had only been used to monitor and control astronomical
instruments. One of the unique features of IRC is the ability
of users and scientists to easily specialize the software for
their instruments' needs. The software architecture that was

assessed for SWAP involved using IRC to control and
monitor the sensor web. Each of the sensor web platforms

consisted of two components: an instrument that measured

eitherrainfallorwindvelocity,andan_icroprocessorrunning
anembeddedversionof theIRCsoftwareto processthe
rainfallorwindvelocitydata.

TheOperatingMissionsasNodesontheInternet(OMNI)
projectselectedavarietyofsmallproc,-ssorsforusewiththe
sensors.TheOMNIteamconfiguredtt_eseprocessorstonan
withvariousversionsof Linuxandprovidedthemto the
SWAPsoftwaredevelopmentteamfor installationof IRC.
Theprocessorswereconnectedto t}lesensors(i.e.,rain
gauges,anemometer)through serial computerport
connections.Althoughtheprocessorswereequippedwith
wirelessIPcommunicationsinanticipationthattheprototype
mightbe field deployed,an EthernetLAN wasused
throughoutthedevelopmentanddemo_strationphasesofthe
prototype.

A. Scenario

The Sensor Web Application Prototype Scenario

Specification [3] provides a detaile, l description of the
science scenario that was used to drive the SWAP system. A

brief summary of this scenario is provided here. Fig. 2 depicts
a layout of rain gauges and weather s_ations around Beaver
Dam Road at the Beltsville Agricultatral Research Center,

located near GSFC. In the spring when this prototype would

theoretically be deployed, the rain gauges and weather
stations would be strategically positioned to take advantage

of the typical weather patterns for that time of year and for
that location. In the spring, the prevailiag winds are expected

to move from generally westerly dire_'tions (NW, W, SW)
across the region. Thus when storms Ibrm and travel to the
Beaver Dam Road region from those directions, the rain

gauges positioned furthest west would be the first to detect
the rain and thus be able to alert the other sensors in the

system of imminent rain and wind cor, ditions. Rain gauges
positioned in the middle of the region would use the rain rate

information as well as the wind speed and direction from a
simulated radar system to predict the direction of the storm

and the probability of its future appearance in their area.
Finally, a "primary" rain gauge could synthesize the
information from all other sensors to geaerate a prediction.

This "primary" rain gauge was so called because it was

uniquely located near the creek at Beaver Dam Road since
that is the location where floods have frequently occurred

during heavy rains.

The sensors communicate with each other and use

information from each other to produce their own predictions
and decisions. This is the collaborative nature of this sensor

web. The main objective of this scenario was to send a

"sector scan" command to a simulated radar system. This
sector scan command would modify the mode of the radar

from its nominal wide sweep mode of a broad region to a
sector scan mode so that only the smaller region of intense
weather conditions could be monitored and at a more

frequent rate. The results of the sector scan mode of the radar

system would be very useful to a meteorologist monitoring
the storm system and especially the rainfall amounts and rate,
and thus the likelihood of very rapidly rising water levels in
the creek.

The Monitor circle in the upper right corner of Fig. 2

represents a graphical user interface (GUI) to monitor the
sensor web. The GUI is not required to supporting the

scenario, but it is a useful tool to display and monitor the real
time events occurring at each rain gauge, the weather

stations, and the radar simulator.

B. Architecture

Fig. 3 depicts the high-level architecture of the system.
Each sensor (rain gauge or weather station) is connected to a

small processor by a serial RS-232 cable. The processor has
the IRC software running under the Linux operating system.

The Radar simulator ran on a desktop PC. The PC in the
lower right in the figure ran a weather station simulator since

we only had one real weather station. Each of the systems
were connected to the network using TCP/IP over Ethemet.

In deployment they would use wireless IP.

Fig. 2: Scenario Overvit w Fig. 3: High-level Architecture

ThemajorchallengeusingIRCv,asto port it froma

desktop environment to an embedded processor that could be
fielded with the rain gauge and wind velocity instruments. A
benefit of this architecture is that the measured data is

processed and interpreted collocated _ith the instrument so
that real-time decisions can be made based on the data the

sensor is receiving. The software associated with each

platform now provides it with the capability to locally
process the measured data and to communicate these

measurements and platform operational status with other
platforms. The algorithms executed by the IRC software

interpreted the data from the local sensor as well as other
sensors in the sensor web in order to make decisions as

described in the Scenario Overview.

I11, HARDWARE

The computers, described in the following sections, were

primarily chosen for their ability to run embedded

applications and operate in an outdoor environment. This
was an important consideration since it was intended that the

sensor web might eventually be deployed to the Beaver Dam
site. Physical dimensions, operating temperatures, and power

consumption were therefore significant hardware selection
criteria. By including these processors in our project, we
learned some of their limitations and techniques for slimming
down the IRC software that runs on tiLem, as well as some

practical lessons with Linux.

A. Tri-M MZI04

We used four MZ104-based compt_ters in our prototype
from Tri-M Systems (http://www.tri-m.com/). The MZ104
is a ZFx86, embedded pc-on-a-chip and was combined with

other hardware, such as a disk-on-chip, on boards mounted in
the shock-resistant "Can-tainer" pictured here.

We worked with Tri-M machines having two different
configurations. One had 32MB of RAM and a 128MB disk-

on-chip, while the other three Tri-M machines featured
64MB RAM and 64MB disk on chip. Physical dimensions
were 91 and 274.6 cubic inches respectively (the smaller

container was adequate).

Like all sensor computers in our prototype, the Tri-M
communicated with its associated sen.,,or via the serial port

and with other sensor computers via Ethernet (using TCP/IP).

Unique to the MZ104 was the LinuxMZ operating system.
Based on Slackware 7, LinuxMZ is a hardware-specific

Linux variant shipped pre-installed on the device. After the
OMNI team did some initial configuration with each Tri-M,
the SWAP software team installed threading libraries, a Java

virtual machine, a Linux-specific s_;rial communications

library, and other utilities.

B. IDAN PCoI04

The IDAN PC-104 from Reai Time Devices (

hill's: ,'v,:v_w.rtdu.sa.co131:), like the Tri-M, was designed to

operate in embedded environments though was more

powerful. It featured a 233MHz Geode MMX processor

running with 128MB RAM and a 2GB IDE disk. With this
hardware, the IDAN ran Red Hat Linux 6.1 and the required
Java virtual machine and serial communications library.

Consisting of independent modules hosting the processor,
an Ethemet interface, disk, and power supply, the IDAN
measures 100 cubic inches in size.

C. Matchbox

The Matchbox PC from Tiqit (http://www.tiqit.conv')

promised the best packaging solution of all embedded
computers used in our prototype. At only 5 cubic inches (and

weighing 3.3 ounces), the Matchbox could easily be mounted
inside one of our rain gauges.

In its current configuration, the Matchbox provided a

486SX processor, 1GB IBM Microdrive, and 16MB of RAM.
It ran the Red Hat Linux 6.2 operating system, Java virtual

machine, and serial communications library.

For the prototype, we used a breakout board to provide
standard connectors to power, Ethernet, and serial ports. In a
fielded situation, the board can be eliminated by connecting

directly to the 68-pin female VHDCI (Very High Density

Cabled Interconnect) connector.

D. Qualcomm Tipping Bucket Rain Gauge

The Tipping Bucket Rain Gauge, from Qualimetrics
(http://www.qualimetrics.com/), was used to measure rainfall

The gauge features a simple see-saw like bucket at the
bottom of a funnel which tips after 0.01 inches of rain. The

tip closes a switch for 100 milliseconds, sending a pulse to
the serial line connected to the sensor computer, where IRC

counts the pulses to determine the rain rate. A custom serial
cable was created to connect the rain gauge to the computer.

The rain gauge has an accuracy of 0.5% at 0.5"/hr. In

windy conditions, the error is increased because the gauge
cannot accurately collect and report all the rain that is falling

(as some of the rain is blown over the top of the funnel).
Algorithms within IRC were developed to account for this
wind-induced error.

E. R. M. Young Weather Station

An R.M Young Weather Station

(http://www.rmyoung.com/) provided wind data for our
prototype. The weather station had other sensors attached to

the unit but only the wind speed and direction measurements
were used for the sensor web prototype. Communicating via

a supplied junction box and a custom serial cable we
fashioned for this project, the weather station reported wind

speed and direction in ASCII messages sent multiple times
per second. IRC converted the units supplied by the weather

station into meters per second and compass direction in

degrees.

The sensor had an accuracy of±0.3 rn/s (0.6 mph) for wind

speed and +3 degrees for wind direction.

IV. SOFTWARE

A. Off-the-Shelf Libraries

The Meteorological Applications t MetApps) is a Java

library from the University Corpora'ion for Atmospheric
Research. The SWAP prototype used the MetApps library to

calculate the distance and angle betwtren two latititude and

longitude points to predict the direction and location of the
storm. It was also used to draw the wind barbs onto the

weather map used in the Monitor GUI.

The IRC software was developed usi_lg the Java 2 Standard
Edition from Sun Microsystems. Java provided the capability

to easily port the IRC software to different operating systems.

The machines used within the protolype were configured
differently including varying amounts of memory and disk

space. On machines with little disk sp_ce we needed to slim
down the installed Java Runtime Environment (JRE). To

reduce the needed disk space for the JRE we removed some
Java libraries that were not needed such as the Java graphics
toolkit.

IRC uses other COTS products such as the Apache Xerces

parser, but those are not discussed in this paper since they
were not specific to the SWAP project [,.oals or development.

B. Instrument Remote Control

IRC is a framework for controlling and monitoring

instruments that may be distributed a_'ross a network. The
software architecture combines the platform independent

processing capabilities of Java with the power of the
Extensible Markup Language (XML), a human readable and

machine understandable way to descry, be structured data. A
key aspect of the architecture is that the software is driven by

an instrument description, written _sing the Instrument
Markup Language (IML), a dialect of KML. IML is used to
describe the command sets and command formats of the

instrument, communication mechanisms, format of the data

coming from the instrument, and _haracteristics of the

graphical user interface to control and monitor the
instrument. Additionally, the IRC framtwork allows the users
to define a data analysis pipeline, which converts data coming
out of the instrument.

IRC provided a quick and easy way to get the sensors up

in a network communicating with each other. In this context,
a sensor is a single running instance of IRC in combination

with either a, physical sensor such as a rain gauge or a set of
code to provide simulation routines.

To better understand what work _as required to get a

sensor up and running, we need to brk'fly describe how IRC
uses IML. The main idea behind IRC and IML is to be able

to describe an instrument and as a resalt have software that

will allow you to communicate with that instrument. Fig. 4 is

a high-level diagram that provides sonde insight into what is
needed to describe a sensor.

Public Interfaces Private Interfaces

j rAML. r_**. AIS_Iu rote r_,

Fig. 4: Describing a Sensor

A single sensor can contain up to two IML descriptions as

indicated in Fig. 4. The Private Interface describes how the
sensor will communicate with other things in order to do its

job. For example, a Rain Gauge Sensor which is depicted by
the IRC circle above needs to communicate with the actual

hardware rain gauge so that it can do things such as calculate
the rate at which it is raining. The second IML description is
called a Public Interface and it describes how something else

can communicate with the Rain Gauge Sensor to receive rain
rates.

In the configuration depicted by Fig. 4, the Rain Gauge
Sensor will receive some type of data each time the actual

rain gauge hardware tips, which signals 0.01 inches of rain
has been collected. The Rain Gauge Sensor would then need
to do some data analysis and execute an algorithm to

determine the rain rate. IRC provides the Pipeline Algorithm

Markup Language (PAML), an XML dialect, to plug in
science algorithms that operate on the data. PAML provides
the list of available custom algorithm types to IRC.

At runtime IRC provides a means to string two or more

data analysis algorithms together into what is called a
"pipeline". The beginning of this data analysis pipeline is
data that is flowing into the sensor data ports. For the SWAP

prototype each sensor had a predefined pipeline configuration
executed at system start time. Fig. 5 shows the internal
software configuration of a Rain Gauge Sensor.

Fig. 5: Rain Gauge Sensor Internals

In our example the Rain Gauge St_nsor is receiving the

following types of data:

• Rain gauge hardware sends a pulse whenever the

bucket tips.
• Another Rain Gauge Sensor is sending rain rates.
• Weather Station Sensor is sending ground wind

speed and direction.
• Radar Sensor is sending atmospheric wind direction

and speed.

In the case of the Rain Gauge Sensor there is only one

algorithm. All the data coming in the ':lata ports is sent to a
Rain Rate algorithm. The Rain Rate algorithm can then

produce predictions and rain rates. Tht_ Rain Rate algorithm

output is then sent out a data port to any other sensor
connected to the Rain Gauge Sensor.

1. Commands and IML

As described earlier, IML is used ttJ describe instruments

including the commands that an instrument accepts. IRC
provides the framework to send a corranand to an instrument.

In addition to IRC providing the framework to send
comn_nds to an instrument, IRC also has the capability to

accept commands.

In the case of SWAP, neither the ram gauge hardware nor
the weather station hardware accepted any commands; both

simply transmitted data. In order to accept a custom
command in IRC, first the command must be described in

IML. Once the command is described, the logic to fulfill the

command request is developed. The fi:_llowing describes the
commands implemented for the SWAP prototype and how
each command was used. We also describe the effort that is

required to add custom command handling within IRC.

a) Get Sensor Location and ID -

Each sensor was located in some physical location. The

location of each rain gauge and weathe_ station was described

in latitude and longitude. Additionally, each sensor in the
web contained a unique identifier (ID). Typically, an ID

would be something like RG1, representing rain gauge 1.
Below is a simple and very basic sample of the IML required
to add a command.

<Command name="Get Sensor Location and ID"/>

IML allows for the specification c,f various information

such as command arguments and synchronous versus
asynchronous command execution. La_er we will see what a

command argument looks like.

The location command is most useful for monitoring the
sensor web. The GUI that was used to monitor the state of the

entire sensor web contained a map of 1he region surrounding

the Beltsville Agricultural Research ('enter. In the scenario,
the rain gauges and weather stations were positioned in this

region. When the GUI started up, a c_,mmand was issued to
all of the sensors in the web to obtai_a the location of each

sensor. Each sensor was able to provide a command response

containing a location and unique ID. The location of each
sensor was plotted onto this map.

b) Get Sensor System Time

Since each sensor in the web sent messages to all other

sensors in the web, time synchronization was important when

calculating data such as wind corrections. This command was
a basic utility to quickly determine that the clocks on various
machines were synchronized to within a second of each other.

c) Set Windspeed and Direction

The radar system used within the prototype was simulated.

Below is a portion of the public IML file that described how
to command the radar sensor.

<Command name=_Set Windspeed and Direction" >

<Field name="windSpeed" type="lnteger" required='true"/>

<Field name="windDirection" type="Compass"

required="true_/>

</Command>

The command above was used to specify to the radar

simulator the speed and direction of the storm it would

generate. This command required two command arguments.
The windSpeed command argument contains a name, type,
and whether or not the argument is required for the command

to be valid. The type specifies the data type of the command

argument. For example, the windDirection value needs to be
of type Compass. A Compass contains a value in degrees
where 0 is north, 90 is east, and so on clockwise.

d) Sector Scan

The radar sensor also accepted a command to go into
sector scan mode. This command was only sent to the radar

sensor by the primary rain gauge sensor when its predicted
rain rate or current rain rate exceeded some threshold rate.

Recall from earlier that the primary rain gauge was called the

primary because it is located near the creek at Beaver Dam
Road that typically floods during heavy rains in that area.

e) Get Daily Measured Accumulation

Each rain gauge sensor accepted a command to retrieve the
total rain during a single day. This command was created for

testing and convenience purposes.

2. State Model

Each sensor in the web maintained some state information

such as its location, unique ID, and system time. The IRC

framework provides the capability to specify a custom state
model that is constructed on startup. Since the state model

was the keeper of information pertaining to several of the

SWAP commands, it was a natural approach to use the state

model to respond to several of the commands.

For SWAP, two state models were created. The more

generic SWAP state model tracked the sensors location, id,
and system time. The second state model was used for the

rain gauge sensors. The rain gauge state model extended the
functionality provided by the generic SWAP state model to
be able to track rain pulses. The rain gauge sensor was

responsible for processing rain rates and predictions. In order
to calculate rain rates, information fiom each rain gauge

bucket tip was needed. Every time the rain gauge hardware
tipped, the rain gauge sensor received a notification and

stored the time at which the tip occurred. This information
was stored in a state model so that an algorithm could make

use of the data to determine individual lain events, rain event

accumulations, and rain rates.

3. Weather Station Data Conversimr

The SWAP prototype used one weather station. It reported

several pieces of data including barometric pressure,
temperature, wind speed, and wind direction. The data

coming from the weather station was received over a serial
connection and was in a raw form. The data needed to be

converted to usable units. We added a custom algorithm that
would take the raw data received from the weather station

and convert it to meters/second rather than instrument cycles.

We chose to convert the weather station units to meters per

second based on a survey of meteorological end user tools.

The algorithm retrieved the wind speed and wind direction

from the input key-value pairs. The wind speed raw value
was in counts per 0.9994 Sec. There are 6 counts per
revolution, and each revolution represents 29.4 cm of air
movement. The wind direction raw value was already

corrected by the compass reading, in tenths of a degree. The
conversion was as follows:

Wind direction (degrees)= (raw wind direction) * O. I

Wind speed (meters per second) = /((((raw wind speed) /
6.0) * 29.4)/0.9994)/100.0)

The algorithm would then output new key value pairs for
wind speed and wind direction in meters per second and

degrees respectfully.

4. Rain Rate Algorithm

The Rain Rate algorithm has several functions to perform.

In general, its function is to determine rain event rain rates
and predictions. The SWAP software team met with scientists
from NASA GSFC's Mesoscale Almospheric Processes

Branch , Code 912, to determine ho_ we should calculate
rain rates. The scientists explained the notion of rain pulses

and rain events. In summary, a rain pulse is considered to be

a single bucket tip from the rain gauge. A rain pulse accounts
for a specified amount of rain accumulation. In our case, each

tip represented 0.01 inches of rain. A rain event represents a
single rain "storm" and is comprised of a series of time

stamped rain pulses. Typically, we only calculate a rain rate
for a single rain event. Imagine if it rair_s early in the morning

and then again in the late afternoon. Two separate rain events

have occurred and therefore we would be interested in the

intensity of each storm individually. A specified period of
time is used to determine when one rain event ends and

another begins. Once the specified amount of time occurs
between rain pulses a new event is created. In a real

operational environment, a half hour between pulses
constitutes a new rain event.

The next factor to think about when determining rain rates

is the ground wind. If the winds exceed a certain rate then the

rain gauge is not collecting as much rain as is really falling.
After consulting the NASA scientists we learned that

adjusting the rain rates for the ground wind is very
complicated and can potentially introduce errors in the data.
With this in mind, it was decided that since this was a

prototype about sensors interacting and making use of each
others data, we would not worry about the absolute scientific

correctness for ground wind correction. Rather, we came up

with a simplistic way to adjust the rain rates to account for

ground winds, which is discussed under Wind Corrections.

5. Predicted Rain Rates

The predicted rain rate algorithm receives data from all of
the other rain gauge sensors in addition to the radar sensor.

The algorithm has information about the movement of the
storm based on the storm velocity (i.e. wind speed and

direction) provided by the radar system simulator.

When the algorithm receives messages that it is raining at a
remote rain gauge, it will look at the most recent data it has
received from the radar sensor and determine if it is in the

path of the storm. If it determines that it is in the path of the
storm, it simply assumes that the rate at which it is raining at
the remote rain gauge sensor is the rate at which it will

eventually be raining at it. If it is not in the storm path then it

has no predicted rain rate.

In addition to predicting a rain rate, it will also predict the
time it will start to rain at its location. The message from the

remote rain gauge sensor contains the remote sensor location.
To determine when it will start raining at the local rain gauge,

the algorithm will determine the distance between itself and
the remote rain gauges. The algorithm makes use of the wind

speed (meters per second) from the radar data to determine

how long it will take for the storm to arrive. The algorithm
applies a basic [(Rate * Time) = Distance] formula to

predict the time when it will start raining.

6. Wind Corrections

Wind corrections are accounted for within the rain rate

algorithm. When a rain gauge sensor receives data from a
weather station sensor, it will determine if the wind data is

applicable, based on the proximity between itself and the
weather station. If the winds exceed a certain rate, then the

rain gauge is not collecting as much rain as is really falling.
The wind data is stored in the sensor's state model for use by

the rain rate algorithm.

TheSWAPprototypemadesomea_sumptionstogreatly
simplifythehandlingof groundwinddata.Thealgorithmis
notaccuratefroma scientificstandpoint.Thegoalof the
prototypewas not to necessaril3'provide accurate
meteorologicalalgorithms,butrathert,_havedifferenttypes
of sensorssharingandmakinguseof eachothers'data.A
simplelookuptableapproachwasus_:dto storerangesof
valueswithpercentagesofrateadjustmt:nts.

Whentherainratealgorithmreceivt_.sanewrainpulse,it
will querythestatemodelto determine:if thereisanywind
datathatcouldbeappliedtoadjustthepulseamount.If wind
datais available,thentheaveragewiJtdspeedbetweenthe
previousraineventpulseandthenewpaiseiscalculated.The
averagewindspeedandtheparametersetareusedtoadjust
thepulseamount.Inthecasewherewehavewinddatabutit
isthefirstpulseintheevent,wetakett_eaverageof thewind
datathatprecedesthenewrainpulsebyafewseconds.

7. Radar Simulator

Since the SWAP prototype was demonstrated in a

controlled setting, we did not have access to a real radar
system. We needed to have control of when it was raining
and where the storm was moving to dt.monstrate the SWAP

prototype.

The SWAP prototype constructed a l adar simulator to play
two key roles within the scenario. The radar simulator

provided atmospheric wind direction _tnd speed so the rain
gauge sensors could predict movement of the storm.
Additionally, the simulator accepted _md responded to the
sector scan command.

The SWAP team briefly investiga'_:ed radar systems to
determine the nature of the data that they produce. Based on

the investigation, a radar simulator was built that was capable
of parsing real vector wind profile files from the National
Weather Service. We constructed a simalated data file so that
we could control the movement of the storm.

IRC was used to represent the radar sensor and to also
simulate the radar system. The radar data simulation was easy

to create given the IRC pipeline and algorithm capabilities.
We constructed a radar simulation algorithm by simply

describing a new algorithm in PAML and then coding the

logic. This algorithm stored state information, generated data
when requested, and responded to the sector scan command
when the sector scan command was received from the

primary rain gauge.

8. Weather Station and Rain Gaug_: Simulators

In addition to simulating the radar system data, the SWAP
prototype was also capable of simulating rain gauge bucket

tips and raw weather station data. Tt_ere are three reasons
behind building these simulators. First, although the SWAP

prototype was originally supposed to include two weather
stations, we only received one. Therefore, to keep the

scenario as originally planned, we ,._imulated the second

weather station. Second, the computers that were to be

connected to the rain gauges and weather stations were

received only a few weeks prior to the SWAP prototype
demonstration. Thus, for testing purposes, the simulators

provided a means to fully test the scenario without actually
using true weather station and rain gauges. When the time
came to actually connect all of the hardware contained in the

prototype, the software was already tested.

3.10 Weather Map

The final piece of functionality that was added to complete
the software for the SWAP prototype was a sensor web

monitoring system. The monitoring system provides a

graphical weather map to display status of the complete
sensor web. Fig. 6 depicts the weather map monitoring

system.

Fig. 6 is a complete IRC screenshot. On the left side of the

image is the default IRC commanding tree. Each sensor is
contained in the commanding tree, and the radar sensor

commands are expanded. The default IRC GUI provided a

means to configure the storm movement by issuing a "Set

Windspeed and Direction" command to the radar sensor. The
only custom portion of this interface is the weather map. The
weather map algorithm received data from the rain gauge
sensors, weather station sensors, and radar simulator in order

to plot their locations and show the rain rates at each location.

V. LESSONS LEARNED

The SWAP prototype demonstrated that collaborative

sensor webs using existing sensors can be developed. The
sensors must be augmented with additional processing and
software to use data from other sensors in the network. The

following sections provide additional technical lessons
learned relative to the actual implementation of the "smart

sensors" using our candidate architecture.

Fig. 6: Sensor Web Monitoring System

A. Assessment of lRC-based Architect_re.

IRC provided the software architecture and framework that
allowed for the SWAP prototype to be constructed and
functional in such a short period of time. The complete

prototype was functional within approximately three and half
calendar months, using only 1.5 FTE (full-time equivalent)

software engineers. Without IRC this would not have been

possible. IRC is a viable component in a sensor web for the
command and control of the individual sensors. Specifically,

through the use of IML IRC provided the communications
fabric that enabled the sensors to commanicate and share data

very quickly. Several key conclusions relative to using IRC
within a sensor web are listed below.

• IRC provided a framework that made it easy to
quickly communicate with the rain gauges and
weather stations.

• IRC can be used to simulate new sensors /

instruments. Adding simulator_; for the sensor web
prototype proved to be very simple and extremely
useful. The simulators provided a great way to test
the software. As sensor webs are further explored it
will be critical to be able to sinmlate instruments,

because critical testing can be performed prior to the

purchase of potentially expensive hardware.
• IRC can be made to run on small devices but

additional work needs to be performed to tune the

performance of the software in an embedded

processor environment.

For example, the sensors commmnicated with one

another using TCP communications. TCP is a
connection-oriented protocol and therefore slows
communications. Another approach would be to

explore UDP, which is a connectionless
communication protocol. IRC provides the
framework to add additional c,_mmunication

protocols.

Additionally, XML parsing needs to be re-evaluated

as a means to tune IRC performance. All of the
XML and PAML files are parsed and validated each
time IRC is started. It would be nice to remove the

need to validate the document_';. Validation during

parsing consumes a large amotmt of memory during
startup. If the files were developed using the IRC

Configuration Editor, we know that they are
syntactically correct, so we coald skip the validation

step during parsing.

The number of threads needs to be reduced. The

small processors could not hal_dle the amount of

memory and system resources that IRC was
consuming. As an extensible architecture, there are

many places for plugging in new modules. Many of
these points of extension are accomplished through a

publish and subscribe mechanism which uses a
couple of threads per instantiation of subscribers.
The use of threads needs to be evaluated to ensure

that new threads of execution are used only when

necessary.

B. Implementation issues and challenges

1. Defining the algorithms is the greatest challenge.

IRC provides the framework for constructing new
algorithms and for passing information to other algorithms
and instruments. The biggest challenge was to identify the

appropriate science algorithms for the scenario that was
simulated. To determine the characteristics of the algorithms

to be used for the SWAP prototype, the software team
consulted NASA scientists to determine the conditions that
would establish when each individual storm begins and ends.

Additionally, they consulted with scientists to determine how
rain rates should be calculated and how ground winds affect

rain rates. Currently, the process to adjust rain rates based on

ground winds is being investigated, and does not have a
definitive answer. Therefore, for the prototype we provided a

simple approach that was not scientifically meaningful.

2. Scalability

The SWAP prototype consisted of only eight sensors, in
addition to the monitoring GUI. The sensor web was small

and thus provided a convenient testbed for determining how
sensors could share data. As a sensor web grows in scale, the

number of interactions will increase significantly, and it will

certainly become more complex to study and evaluate the
total number of processing and communications states that it

can theoretically possess. A key problem moving forward
will be planning for problems with many remote sensors
communicating together toward a common goal. IRC does

not currently address many issues that would arise in a large
sensor web. For example, sensors will have to be added or
removed without disrupting the entire sensor web. Network

traffic loads will vary depending upon the number of

available multiple modes of sensor-sensor interaction. IRC
needs to be able to dynamically adjust to these mode changes

instead of establishing a set of static conditions at startup
time. During the demonstration, we eliminated some of the
connections to enable IRC to run more efficiently and to

minimize any possibility of running out of available resources
(e.g., memory, disk storage) without further optimization of

communication ports and protocols. In conclusion, although
IRC was used successfully to prototype a small sensor web, it

would not in its present form be able to support a large
number of sensors that have limited resources (i.e., memory

and disk).

3. Porting IRC to Linux

Porting IRC to Linux was easy. It simply required
installation of two sets of libraries. Fir._t, we needed a Linux

implementation of the Java CommAPI, which is used in IRC
for serial port communications. The RXTX library (

http://www.rxtx.org_), available under the LGPL license,

provided this support. Second, we needed libraries to support
native Linux threads, though only on the LinuxMZ machines
(RedHat Linux already provided them). Since LinuxMZ is
based on Slackware 7, we used libraries obtained from their

site (http://ww_,.slackware.org/).

4. Sensor Web Weather Mapping

Implementation of a weather sensor web would require a
more sophisticated user interface. We recommend
integrating an existing 3 rd party application or library for this

purpose. A candidate is MetApps (Meteorological

Applications), some of whose compon_'nts were used in this

prototype.

C. Technology Gaps

The variety of sensor computers we employed presented us

with various challenges, successes, and failures.

• The IDAN machine performed flawlessly
throughout the project, keeping up with the volume

of data, algorithms, and communications with other
sensors.

• The Tri-M machines gave mix_:d results. During
installation we trimmed the JV M and IRC to fit on

the 64MB disk. While testing we experienced slow

startup times (-3 minutes), intermittent errors in the
Linux threading library, and occasional system
failures due to static electricity.

• With only 16MB of RAM, the Matchbox PC could
not keep up with the demands of standard Java and

IRC. It rarely reported its data to the sensor web,
even after minimizing the number of connections it
needed to make to other computers. Despite this

performance, the Matchbox was reliable.

As a result, we identified the optimum configuration for

current SWAP implementation as 64 MB RAM and 128 MB
disk. When taking into account its size, reliability, and

ability to run standard Red Hat Linux, future iterations of the
Matchbox would be ideally-suited. As of this writing,
however, a 32MB RAM Matchbox PC is the next planned
release.

There are other approaches to reduce SWAP's hardware
requirements. Research areas include the following:

• Test with Java Standard Edition 1.4 - it reduces the

need for a thread per TCP/IP connection; this may
reduce runtime resource needs and allow for full

communication between all se asors

• Identify tuning opportunities within IRC- startup
times & memory usage for IRe might be reduced,

for example, by optimizing or replacing the XML

parsing with another approach
• Experiment with Java 2 Micro Edition -- the CDC

(Connected Device Configuration) with the
Foundation Profile is the best place to start our

research. Together, they are the closest to the J2SE
feature-wise, and are also only one of two
combinations available for Linux at the moment (at

least from Sun). The CDC is intended for 32-bit

microprocessor/controller with more than 2.0MB of

total memory.

ACKNOWLEDGMENT

We thank Dr. Marshall Shepherd for working with us to

develop the initial science scenario and vision for the

prototype. Mr. Brad Fisher, Dr. Eyal Amitai, and Dr. Ali
Tokay consulted with us about algorithms for tipping bucket

rain gauges and wind correction. They also provided us with
loaner rain gauges to test and demonstrate our system. James

Rash (NASA), Ron Parise (CSC), Keith Hogie (CSC), and Ed

Criscuolo (CSC) worked on the hardware and provided us
with our loaner weather station as well as many cables.

Xuewu Cai, Anass Manjra, Tony Ritrivi, and Mike Mersky of

Aquilent helped construct and test the SWAP prototype and
supported the demonstration. Last but not least, Julie Breed,
the Code 588 Branch Head at GSFC, and Steve Talabac of

Aquilent provided us with guidance and editing of content for
our documentation, demonstration, and web site.

REFERENCES

[l] Steve Talabac, Lynne Case, Mike Mersky (designer)
"GSFC ISC Sensor Web Research", web page

pointing to Sensor Web research around the world as

well as the subject material of this paper.
http://pioneer.gs fc.nasa.go(:/public/sensorweb/

[2] Troy Ames, "Instrument Remote Control Project"
web site at: http://pioneer.gsfc.nasa.gov/public/irc

[3] Lynne Case, "Sensor Web Application Prototype

Scenario Specification", obtain at:
http://pioneer.gsfc.nasa.gov/public/sensorweb/SWA

P Prototype.doc

